Optimizing Textual Entailment Recognition Using Particle Swarm Optimization
نویسندگان
چکیده
This paper introduces a new method to improve tree edit distance approach to textual entailment recognition, using particle swarm optimization. Currently, one of the main constraints of recognizing textual entailment using tree edit distance is to tune the cost of edit operations, which is a difficult and challenging task in dealing with the entailment problem and datasets. We tried to estimate the cost of edit operations in tree edit distance algorithm automatically, in order to improve the results for textual entailment. Automatically estimating the optimal values of the cost operations over all RTE development datasets, we proved a significant enhancement in accuracy obtained on the test sets.
منابع مشابه
Recognizing Textual Entailment for Italian EDITS @ EVALITA 2009
This paper overviews FBK’s participation in the Textual Entailment task at EVALITA 2009. Our runs were obtained through different configurations of EDITS (Edit Distance Textual Entailment Suite), the first freely available open source tool for Recognizing Textual Entailment (RTE). With a 71% Accuracy, EDITS reported the best score out of the 8 submitted runs. We describe the sources of knowledg...
متن کاملAutomatic Cost Estimation for Tree Edit Distance Using Particle Swarm Optimization
Recently, there is a growing interest in working with tree-structured data in different applications and domains such as computational biology and natural language processing. Moreover, many applications in computational linguistics require the computation of similarities over pair of syntactic or semantic trees. In this context, Tree Edit Distance (TED) has been widely used for many years. How...
متن کاملOptimizing Design of Stand-alone Hybrid Solar Micro-CHP Systems Using LUS Based Particle Swarm Optimization Algorithm
Utilizing the combined cooling, heating and power generation (CHP) systems to produce cooling, heat and electricity is growing rapidly due to their high efficiency and low emissions in commercial and industrial applications. In conventional CHP systems the deficit of the system power can be purchased from the grid. However, this system cannot be used as the standalone application. The hybrid so...
متن کاملOptimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)
The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کامل